Πέμπτη 22 Δεκεμβρίου 2011

Reflections of cevians

Let ABC be a triangle and A'B'C' the cevian triangle of H.


Denote:

12 := the reflection of AA' in BB'
13 := the reflection of AA' in CC'

23 := the reflection of BB' in CC'
21 := the reflection of BB' in AA'

31 := the reflection of CC' in AA'
32 := the reflection of CC' in BB'

1'2' := the parallel to 12 through B'
1'3' := the parallel to 13 through C'

2'3' := the parallel to 23 through C'
2'1' := the parallel to 21 through A'

3'1' := the parallel to 31 through A'
3'2' := the parallel to 32 through B'

A* := 1'2' /\ 1'3'
B* := 2'3' /\ 2'1'
C* := 3'1' /\ 3'2'

1. The triangles ABC, A*B*C* are perspective (at H)
2. The triangles A'B'C', A*B*C* are perspective (at H)
2. The points A'B'C'A*B*C* are concyclic (on the NPC)

Generalization:

Point P instead of H.


Which is the locus of P such that:

1. The triangles ABC, A*B*C* are perspective ?
2. The triangles A'B'C', A*B*C* are perspective ?
2. The points A'B'C'A*B*C* are conconic ? (when the conic is circle) ?

Variation:

1'2' := the parallel to 12 through C'
1'3' := the parallel to 13 through B'

2'3' := the parallel to 23 through A'
2'1' := the parallel to 21 through C'

3'1' := the parallel to 31 through B'
3'2' := the parallel to 32 through A'


APH 22 December 2011

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...