Δευτέρα 12 Δεκεμβρίου 2011

Parallel Lines : GENERALIZATION 1


Let ABC be a triangle, P a point, A'B'C' the pedal triangle of P and L a line.

Denote (for I, J : the incenters of ABC, A'B'C', resp.):
L1,L2,L3 := the reflections of AI, BI, CI in L, resp.
M1,M2,M3 := the reflections of the bisectors A'J, B'J, C'J of the triangle A'B'C' in L1, L2, L3, resp

Which is the locus of P such that the lines M1,M2,M3 are concurrent?

APH, 12 December 2011

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...