Δευτέρα 12 Δεκεμβρίου 2011

Parallel Lines : GENERALIZATION 1


Let ABC be a triangle, P a point, A'B'C' the pedal triangle of P and L a line.

Denote (for I, J : the incenters of ABC, A'B'C', resp.):
L1,L2,L3 := the reflections of AI, BI, CI in L, resp.
M1,M2,M3 := the reflections of the bisectors A'J, B'J, C'J of the triangle A'B'C' in L1, L2, L3, resp

Which is the locus of P such that the lines M1,M2,M3 are concurrent?

APH, 12 December 2011

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics    4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...