Παρασκευή 9 Δεκεμβρίου 2011

NINE POINT CIRCLE


Let ABC be a triangle, A'B'C' the orthic triangle and P a point.


Let A*,B*,C* be the orthogonal projections of A,B,C on the line OP, resp.
Let L1,L2,L3 be the reflections of A'A*,B'B*,C'C* in the altitudes AA',BB',CC', resp. and M1,M2,M3 the parallels through A,B,C, to L1,L2,L3, resp.

The lines M1,M2,M3 concur at a point Q on the Nine Point Circle of ABC (Q is the center of the rectangular circumhyperbola which is the isogonal conjugate of the line OP)

APH, 9 December 2011

1 σχόλιο:

  1. I have posted a solution to this problem here:-
    http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=331763&&start=1111
    See post no. 1112 and 1114

    ΑπάντησηΔιαγραφή

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...