Σάββατο 19 Οκτωβρίου 2024

PANAKIS' PSEUDOISOSCELES TRIANGLE

Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I]
Prove that the triangle D1D2D3 can be isosceles without ABC being isosceles.
Ioannis Panakis, Plane Trigonometry, vol. B, Athens (1973), p. 110 [in Greek]

I call this triangle ABC as Panakis pseudoisosceles triangle

Properties of ABC (in the same book pp. 109-111)
1. The A, D1, D2, D3 are concyclic [the cevian circle of I passes through A]
2. (a + b + c)*(-a^2 + b^2 + c^2) + abc = 0
3. a / (b + c) = b / (c + a) + c / (a + b)
4. (r1 - r) / (r1 + r) = ((r2 - r) / (r2 + r)) + ((r3 - r) / (r3 + r))
where r = the inradius and r1, r2, r3 the exradii.

PDF of the pages of the book Panakis

Mail Antreas P. Hatzipolakis

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...