Κυριακή 6 Ιανουαρίου 2013

HOMOTHETIC EQUILATERAL TRIANGLES

Let A'B'C', A"B"C" be two homothetic equilateral triangles.

Conjecture: The Euler lines of the triangles A'B"C", B'C"A", C'A"B" are concurrent, and also the Euler lines of the triangles A"B'C', B"C'A', C"A'B', if no one of the 6 triangles is degenerated.


A. P. Hatzipolakis, Hyacithos #21357

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(5459) Let ABC be a triangle, let A', B', C' be the midpoints of BC, CA, AB. Let L_a be the perpendicular through A' ...