Κυριακή 6 Ιανουαρίου 2013

HOMOTHETIC EQUILATERAL TRIANGLES

Let A'B'C', A"B"C" be two homothetic equilateral triangles.

Conjecture: The Euler lines of the triangles A'B"C", B'C"A", C'A"B" are concurrent, and also the Euler lines of the triangles A"B'C', B"C'A', C"A'B', if no one of the 6 triangles is degenerated.


A. P. Hatzipolakis, Hyacithos #21357

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...