Τρίτη 29 Ιανουαρίου 2013

CONICS CENTERED AT O

Let ABC be a triangle and r1,r2,r3 three not equal line segments.

Denote:

a1 = the circle centered at A with radius r1. Similarly ....

a1b2 = the radical axis of the circles a1 and b2. Similarly .....

Six Radical centers:

(a1,b2,c3), (a1,b3,c2), (a2,b3,c1), (a2,b1,c3), (a3,b1,c2), (a3,b2,c1)

Six other points of concurrent radical axes:

(a1b2,b3c1,c2a3), (a1b3,b2c1,c3a2), (a2b3,b1c2,c3a1), (a2b1,b3c2,c1a3), (a3b1,b2c3,c1a2),(a3b2,b1c3,c2a1)

The 12gon has opposite sides parallel and equal. It is inscribed on a conic centered at the circumcenter O = radical center of (a1,b1,c1) and (a2,b2,c2) and (a3,b3,c3)

Antreas P. Hatzipolakis. 29 Jan. 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...