Τετάρτη 30 Ιανουαρίου 2013

COLLINEAR NPC CENTERS ?


Let ABC be a triangle, L a line passing through H (orthocenter), intersecting the sidelines BC,CA,AB at A',B',C', resp., La,Lb,Lc the reflections of L in the sidelines BC,CA,AB, resp. (concurrent at a point S on the circumcircle) and Ab,Ac the orthogonal projections of A' on Lb,Lc, resp., Bc,Ba the orthogonal projections of B' on Lc,La, resp. and Ca,Cb the orthogonal projections of C' on La,Lb, resp. The NPC centers Na,Nb,Nc of of A'AbAc, B'BcBa, C'CaCb resp. are collinear. (??)

Antreas P. Hatzipolakis, 30 Jan. 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...