Πέμπτη 26 Ιανουαρίου 2012

LOCUS


Let ABC be triangle, P a point, A1B1C1 the cevian triangle of P and A2B2C2 the circumcevian triangle of P.


Denote:

Ab = the other than A2 intersection of the circumcircle and A2B1
Ac = the other than A2 intersection of the circumcircle and A2C1

Bc = the other than B2 intersection of the circumcircle and B2C1
Ba = the other than B2 intersection of the circumcircle and B2A1

Ca = the other than C2 intersection of the circumcircle and C2A1
Cb = the other than C2 intersection of the circumcircle and C2B1

The lines AbAc, BcBa, CaCb bound a triangle A3B3C3.

Which is the locus of P such that:

1. ABC, A3B3C3

2. A1B1C1, A3B3C3

3. A2B2C2, A3B3C3

are perspective?


APH, 26 January 2012

----------------------------------------------------

For 1. and 3. the locus is the whole plane.
For 2, the locus is (symmedians) + circumcircle + (12th degree curve whose isogonal conjugate is 6th degree curve).

For 1. the perspector is

{a^2 x (c^2 y + b^2 z) (c^4 x^2 y^2 + b^2 c^2 x^2 y z +
2 a^2 c^2 x y^2 z + b^4 x^2 z^2 + a^2 b^2 x y z^2 +
a^4 y^2 z^2) (c^4 x^2 y^2 + b^2 c^2 x^2 y z + a^2 c^2 x y^2 z +
b^4 x^2 z^2 + 2 a^2 b^2 x y z^2 + a^4 y^2 z^2),
b^2 y (c^2 x + a^2 z) (c^4 x^2 y^2 + 2 b^2 c^2 x^2 y z +
a^2 c^2 x y^2 z + b^4 x^2 z^2 + a^2 b^2 x y z^2 +
a^4 y^2 z^2) (c^4 x^2 y^2 + b^2 c^2 x^2 y z + a^2 c^2 x y^2 z +
b^4 x^2 z^2 + 2 a^2 b^2 x y z^2 + a^4 y^2 z^2),
c^2 (b^2 x + a^2 y) z (c^4 x^2 y^2 + 2 b^2 c^2 x^2 y z +
a^2 c^2 x y^2 z + b^4 x^2 z^2 + a^2 b^2 x y z^2 +
a^4 y^2 z^2) (c^4 x^2 y^2 + b^2 c^2 x^2 y z + 2 a^2 c^2 x y^2 z +
b^4 x^2 z^2 + a^2 b^2 x y z^2 + a^4 y^2 z^2)}

For 2. the perspector is

{a^2 (-c^16 x^8 y^8 - 6 c^14 x^7 y^7 (b^2 x + a^2 y) z -
c^12 x^6 y^6 (17 b^4 x^2 + 30 a^2 b^2 x y + 14 a^4 y^2) z^2 -
c^10 x^5 y^5 (30 b^6 x^3 + 69 a^2 b^4 x^2 y + 54 a^4 b^2 x y^2 +
14 a^6 y^3) z^3 -
3 b^2 c^8 x^5 y^4 (12 b^6 x^3 + 33 a^2 b^4 x^2 y +
31 a^4 b^2 x y^2 + 10 a^6 y^3) z^4 -
c^6 x^3 y^3 (30 b^10 x^5 + 99 a^2 b^8 x^4 y +
107 a^4 b^6 x^3 y^2 + 21 a^6 b^4 x^2 y^3 - 30 a^8 b^2 x y^4 -
14 a^10 y^5) z^5 -
c^4 x^2 y^2 (b^2 x + a^2 y)^3 (17 b^6 x^3 + 18 a^2 b^4 x^2 y -
12 a^4 b^2 x y^2 - 14 a^6 y^3) z^6 -
6 c^2 x y (b^2 x - a^2 y) (b^2 x + a^2 y)^6 z^7 - (b^2 x -
a^2 y) (b^2 x + a^2 y)^7 z^8),
b^2 (-c^16 x^8 y^8 - 6 c^14 x^7 y^7 (b^2 x + a^2 y) z -
c^12 x^6 y^6 (14 b^4 x^2 + 30 a^2 b^2 x y + 17 a^4 y^2) z^2 -
c^10 x^5 y^5 (14 b^6 x^3 + 54 a^2 b^4 x^2 y + 69 a^4 b^2 x y^2 +
30 a^6 y^3) z^3 -
3 a^2 c^8 x^4 y^5 (10 b^6 x^3 + 31 a^2 b^4 x^2 y +
33 a^4 b^2 x y^2 + 12 a^6 y^3) z^4 +
c^6 x^3 y^3 (14 b^10 x^5 + 30 a^2 b^8 x^4 y - 21 a^4 b^6 x^3 y^2 -
107 a^6 b^4 x^2 y^3 - 99 a^8 b^2 x y^4 - 30 a^10 y^5) z^5 +
c^4 x^2 y^2 (b^2 x + a^2 y)^3 (14 b^6 x^3 + 12 a^2 b^4 x^2 y -
18 a^4 b^2 x y^2 - 17 a^6 y^3) z^6 +
6 c^2 x y (b^2 x - a^2 y) (b^2 x + a^2 y)^6 z^7 + (b^2 x -
a^2 y) (b^2 x + a^2 y)^7 z^8),
c^2 (c^16 x^8 y^8 + 6 c^14 x^7 y^7 (b^2 x + a^2 y) z +
2 c^12 x^6 y^6 (7 b^4 x^2 + 15 a^2 b^2 x y + 7 a^4 y^2) z^2 +
2 c^10 x^5 y^5 (7 b^6 x^3 + 27 a^2 b^4 x^2 y + 27 a^4 b^2 x y^2 +
7 a^6 y^3) z^3 + 30 c^8 x^5 y^5 (a b^3 x + a^3 b y)^2 z^4 -
c^6 x^3 y^3 (14 b^10 x^5 + 30 a^2 b^8 x^4 y +
21 a^4 b^6 x^3 y^2 + 21 a^6 b^4 x^2 y^3 + 30 a^8 b^2 x y^4 +
14 a^10 y^5) z^5 -
c^4 x^2 y^2 (14 b^12 x^6 + 54 a^2 b^10 x^5 y +
93 a^4 b^8 x^4 y^2 + 107 a^6 b^6 x^3 y^3 +
93 a^8 b^4 x^2 y^4 + 54 a^10 b^2 x y^5 + 14 a^12 y^6) z^6 -
3 c^2 x y (b^2 x + a^2 y)^3 (2 b^8 x^4 + 4 a^2 b^6 x^3 y +
5 a^4 b^4 x^2 y^2 + 4 a^6 b^2 x y^3 + 2 a^8 y^4) z^7 - (b^2 x +
a^2 y)^4 (b^4 x^2 + a^2 b^2 x y + a^4 y^2)^2 z^8)}

For 3. the equation of the 12th curve is

c^12 x^6 y^6 + 5 b^2 c^10 x^6 y^5 z + 5 a^2 c^10 x^5 y^6 z +
11 b^4 c^8 x^6 y^4 z^2 + 23 a^2 b^2 c^8 x^5 y^5 z^2 +
11 a^4 c^8 x^4 y^6 z^2 + 14 b^6 c^6 x^6 y^3 z^3 +
44 a^2 b^4 c^6 x^5 y^4 z^3 + 44 a^4 b^2 c^6 x^4 y^5 z^3 +
14 a^6 c^6 x^3 y^6 z^3 + 11 b^8 c^4 x^6 y^2 z^4 +
44 a^2 b^6 c^4 x^5 y^3 z^4 + 65 a^4 b^4 c^4 x^4 y^4 z^4 +
44 a^6 b^2 c^4 x^3 y^5 z^4 + 11 a^8 c^4 x^2 y^6 z^4 +
5 b^10 c^2 x^6 y z^5 + 23 a^2 b^8 c^2 x^5 y^2 z^5 +
44 a^4 b^6 c^2 x^4 y^3 z^5 + 44 a^6 b^4 c^2 x^3 y^4 z^5 +
23 a^8 b^2 c^2 x^2 y^5 z^5 + 5 a^10 c^2 x y^6 z^5 + b^12 x^6 z^6 +
5 a^2 b^10 x^5 y z^6 + 11 a^4 b^8 x^4 y^2 z^6 +
14 a^6 b^6 x^3 y^3 z^6 + 11 a^8 b^4 x^2 y^4 z^6 +
5 a^10 b^2 x y^5 z^6 + a^12 y^6 z^6 = 0.

Francisco Javier García Capitán
27 January 2012

----------------------------------------------------

Variation:

Let ABC be triangle, P a point, A1B1C1 the pedal (instead of cevian) triangle of P and A2B2C2 the circumcevian triangle of P. etc

APH


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...