Κυριακή 22 Ιανουαρίου 2012

BROCARD PRIZE



Let ABC be a triangle and Ka, Kb, Kc the Brocard axes of
the triangles GBC, GCA, GAB, resp.

Let A'B'C' be a triangle homothetic and sharing the same
centroid G with ABC.

Conjecture:

The reflections La,Lb,Lc of Ka,Kb,Kc in the sidelines B'C', C'A',
A'B' of A'B'C' resp. are concurrent.

See: ANOPOLIS list, Message 137

The first who will send a solution (synthetic or not) to list HYACINTHOS will win the book: F.G.-M.: Exercices d' Algebre (1198 pages)



Good Luck!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics    4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...