Τετάρτη 25 Ιανουαρίου 2012

LOCUS


Let ABC be a triangle, A'B'C' the cevian triangle of G, A"B"C" the circumcevian triangle of G with respect the triangle A'B'C' and O1,O2,O3 the circumcenters of GB"C",GC"A",GA"B", resp.


The triangles ABC, O1O2O3 are perspective.

Perspector?

APH, 25 January 2012

-------------------------------------------------

Generalization:

Let ABC be a triangle, A'B'C' the cevian triangle of P, A"B"C" the circumcevian triangle of P with respect the triangle A'B'C' and O1,O2,O3 the circumcenters of PB"C", PC"A", PA"B", resp.
The triangles ABC, O1O2O3 are perspective gives as locus the Yiu quintic and an octic through G and H.

The perspector for H is X381 and that for G is the isotomic conjugate of the point {3 a^4 - 4 a^2 b^2 + b^4 - 4 a^2 c^2 - 6 b^2 c^2 + c^4,
a^4 - 4 a^2 b^2 + 3 b^4 - 6 a^2 c^2 - 4 b^2 c^2 + c^4,
a^4 - 6 a^2 b^2 + b^4 - 4 a^2 c^2 - 4 b^2 c^2 + 3 c^4}, not in ETC.

Francisco Javier García Capitán
26 January 2012

ADDENDUM (10/9/19)

Perspector for P = G: X(14494)
Its isotomic conjugate: X(34229)

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...