Τρίτη 11 Ιανουαρίου 2011

INRADIUS 3

Let ABC be a triangle D a point on BC and r_1,r_2 the inradii of ABD, ACD resp. To construct ABC if we know the angles of ABC and are given the r_1,r_2.

Solution:

Let AE = h_a be the altitude from A and r the inradius of ABC.



We have:

h_a = 2r_1r_2 / (r_1 + r_2 - r)

(by this Theorem)

and

r / h_a = 4Rsin(A/2)sin(B/2)sin(C/2)/2RsinBsinC = sin(A/2)/2cos(B/2)cos(C/2)

==> h_a is known.

Addendum (12-1-2011):

Synthetic solution by Nikolaos Dergiades:
Hyacinthos, Message 19725

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...