Let ABC be a triangle D a point on BC and r_1,r_2 the inradii of ABD, ACD resp. To construct ABC if we know the angles of ABC and are given the r_1,r_2.
Solution:
Let AE = h_a be the altitude from A and r the inradius of ABC.
We have:
h_a = 2r_1r_2 / (r_1 + r_2 - r)
(by this Theorem)
and
r / h_a = 4Rsin(A/2)sin(B/2)sin(C/2)/2RsinBsinC = sin(A/2)/2cos(B/2)cos(C/2)
==> h_a is known.
Addendum (12-1-2011):
Synthetic solution by Nikolaos Dergiades:
Hyacinthos, Message 19725
Τρίτη 11 Ιανουαρίου 2011
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
ETC pm
X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Thanasis Gakopoulos - Debabrata Nag, Morley Theorem ̶ PLAGIOGONAL Approach of Proof Abstract: In this work, an attempt has been made b...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου