LEMMA
Let ABC be a triangle and D a point on BC.
Assume that D is between B and C.
Let r_a, r_b, r_c be the radii of the incircles
of the triangles ABC, BAD, CAD, resp.
And R_a, R_b, R_c the radii of the corresponding excircles, ie
Ra := the a-exradius of the triangle BAC
Rb := the a-exradius of the triangle BAD
Rc := the a-exradius of the triangle CAD.
This equality holds:
(r_b / R_b) * (r_c / R_c) = r_a / R_a
Proof 1 (trigonometrically):
In every triangle we have that
Inradius r = 4Rsin(A/2)sin(B/2)sin(C/2)
Exradius r_1 = 4Rsin(A/2)cos(B/2)cos(C/2)
By applying these formulae to the triangles ABC, ABD, ACD, we
get:
r_a / R_a = tan(B/2)tan(C/2)
r_b / R_b = tan(BDA/2)tan(B/2)
r_c / R_c = tan(CDA/2)tan(C/2)
==> (r_b / R_b) * (r_c / R_c) = r_a / R_a
since tan(BDA/2)tan(CDA/2) = 1 (since BDA+CDA = Pi)
Proof 2 (algebraically):
Denote
AB = c, BC = a, CA = b, AD = z, BD = x, DC = y
In every triangle ABC we have that:
Inradius r = area(ABC) / s
Exradius r_1 = area(ABC) / s-a
(where s = semiperimeter of ABC)
Now, by applying these formulae in the triangles
ABC, ABD, ACD, the formula to prove:
(r_b / R_b) * (r_c / R_c) = r_a / R_a
becomes:
(c+z-x)/(c+z+x) * (b+z-y)/(b+z+y) = (-a+b+c) / (a+b+c) ==>
abc + abz + acz + az^2 + axy =
= b^2x + bzx + bcy + byz + bcx + czx + c^2y + cyz (#)
By the Stewart Theorem we get:
b^2x +c^2c = z^2a + axy
The (#) becomes:
abc + abz + acz = bzx + bcy + byz + bcx + czx + cyz
and by replacing x with a-y (since x+y = a), we finally get:
0 = 0
THEOREM
If h_a is the common altitude (from A) of the triangles
ABC, ABD, ACD, then
1. h_a = 2r_b*r_c / (-r_a + r_b + r_c)
2. h_a = 2R_b*R_c / (R_a - R_b - R_c)
In every triangle:
2/h_a = 1/r - 1/r_1 (where r,r_1 are the inradius, a-exradius,resp.)
By applying the formula to the triangles ABC, ABD, ACD,
we get:
2/h_a = 1/r_a - 1/R_a = 1/r_b - 1/R_b = 1/r_c - 1/R_c
From these equalities we get:
R_a = h_a * r_a / (h_a - 2r_a)
R_b = h_a * r_b / (h_a - 2r_b)
R_c = h_a * r_c / (h_a - 2r_c)
By replacing the Ra,Rb,Rc in the
(r_b / R_b) * (r_c / R_c) = r_a / R_a
we get:
h_a = 2r_b*r_c / (-r_a + r_b + r_c)
Similarly, from the equalities above, we get:
r_a = h_a * R_a / (h_a + 2R_a)
r_b = h_a * R_b / (h_a + 2R_b)
r_c = h_a * R_c / (h_a + 2R_c)
and by replacing the r_a,r_b,r_c in the
(r_b / R_b) * (r_c / R_c) = r_a / R_a
we get
h_a = 2R_b*R_c / (R_a - R_b - R_c)
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου