To construct triangle ABC if are given A, 2b + a = m, 2c + a = n
Analysis
Let ABC be the triangle in question.
We have:
m+n = 2(a+b+c) = 4s ==> the semiperimeter s is known
m-n = 2(b-c) ==> the difference b-c is known
Let E,D the points the a-excircle (Ia) touches AC,BC, resp.
The triangle DAIa has:
ADIa = 90 d., DAIa = A/2, AD = s. Therefore IaD = IaE = r_b is known.
Let M be the midpoint of BC. We have BIaC = 90-(A/2) and ME = (|b-c|)/2.(So the problem is eqivalent to construct triangle if are given:
A, b-c, r_b)
IaM^2 = IaE^2 + ME^2 = (r_b)^2 + ((b-c)/2)^2 ==> the median IaM is known.
In the triangle IaBC we know the angle Ia, the altitude and the median from Ia, therefore the problem is equivalent to construct triangle if are given:
A, h_a, m_a (altitude, median from A, resp.). This construction is left to the reader.
Exercises:
To construct triangle ABC if are given:
1. A, 2b - a = m, 2c + a = n
2. A, 2b - a = m, 2c - a = n
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου