Τρίτη 4 Ιανουαρίου 2011

INRADIUS 2

To construct triangle ABC if are given the radii r_1, r_2, r_3, defined
as follows: Let Da be a point on BC such that inradius of ABDa = inradius of ACDa := r_1. Similarly r_2, r_3


Solution

Let ABC be the triangle, Da, Db, Dc, three points on BC,CA,AB, resp. such that: inradius of ABDa = inradius of ACDa = r_1, and similarly Db,Dc and AHa := h_a, BH_b : = h_b, CH_c := h_c the three altitudes of ABC and r its inradius.


By this Theorem we have:

h_a = 2(r_1)^2 / (2r_1 - r) ==>

1/h_a = (2r_1 - r) / 2(r_1)^2

and similarly:

1/h_b = (2r_2 - r) / 2(r_2)^2

1/h_c = (2r_3 - r) / 2(r_3)^2

Now, since

1/r = 1/h_a + 1/h_b + 1/h_c

we have:

1/r = [(2r_1 - r) / 2(r_1)^2 ] + [(2r_2 - r) / 2(r_2)^2] + [(2r_3 - r) / 2(r_3)^2]

==>

r^2(1/(r_1)^2 + 1/(r_2)^2 + 1/(r_3)^2) - 2r(1/r_1 + 1/r_2 + 1/r_3) + 2 = 0

==> r is known ==> h_a, h_b, h_c are known (from the formulae above).

So we have to construct triangle ABC whose the three altitudes are known.
It's an easy problem.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...