To construct triangle ABC if are given the radii r_1, r_2, r_3, defined
as follows: Let Da be a point on BC such that inradius of ABDa = inradius of ACDa := r_1. Similarly r_2, r_3
Solution
Let ABC be the triangle, Da, Db, Dc, three points on BC,CA,AB, resp. such that: inradius of ABDa = inradius of ACDa = r_1, and similarly Db,Dc and AHa := h_a, BH_b : = h_b, CH_c := h_c the three altitudes of ABC and r its inradius.
By this Theorem we have:
h_a = 2(r_1)^2 / (2r_1 - r) ==>
1/h_a = (2r_1 - r) / 2(r_1)^2
and similarly:
1/h_b = (2r_2 - r) / 2(r_2)^2
1/h_c = (2r_3 - r) / 2(r_3)^2
Now, since
1/r = 1/h_a + 1/h_b + 1/h_c
we have:
1/r = [(2r_1 - r) / 2(r_1)^2 ] + [(2r_2 - r) / 2(r_2)^2] + [(2r_3 - r) / 2(r_3)^2]
==>
r^2(1/(r_1)^2 + 1/(r_2)^2 + 1/(r_3)^2) - 2r(1/r_1 + 1/r_2 + 1/r_3) + 2 = 0
==> r is known ==> h_a, h_b, h_c are known (from the formulae above).
So we have to construct triangle ABC whose the three altitudes are known.
It's an easy problem.
Τρίτη 4 Ιανουαρίου 2011
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου