Δευτέρα 20 Μαρτίου 2023

POINTS ON THE McCAY CUBIC ( K003) - 1

[APH = Antreas P. Hatzipolakis]:

Let ABC be a triangle, P, Q two isogonal conjugate points and PaPbPc, QaQbQc the circumcevian triangles of P, Q, resp.

Denote

Paa = BC ∩ OPa
Pbb = CA ∩ OPb
Pcc = AB ∩ OPc

Qaa = BC ∩ OQa
Qbb = CA ∩ OQb
Qcc = AB ∩ OQc

Conjecture
Paa, Qaa, Pbb, Qbb, Pcc, Qcc lie on a conic.

For which P's the conic is a circle?



[Francisco Javier García Capitán]

It seems that there is two points other than the reflections of A, B, C in O such that the conic is a circle.

These are the intersections of the three cubics

SA SB x^2 y+SB^2 x^2 y-SA SC x^2 z-SC^2 x^2 z+2 SB^2 x y z-2 SC^2 x y z-SB SC y^2 z-SC^2 y^2 z+SB^2 y z^2+SB SC y z^2 = 0

SA^2 x y^2+SA SB x y^2-SA SC x^2 z-SC^2 x^2 z+2 SA^2 x y z-2 SC^2 x y z-SB SC y^2 z-SC^2 y^2 z+SA^2 x z^2+SA SC x z^2 = 0

SA SB x^2 y+SB^2 x^2 y-SA^2 x y^2-SA SB x y^2-2 SA^2 x y z+2 SB^2 x y z-SA^2 x z^2-SA SC x z^2+SB^2 y z^2+SB SC y z^2  = 0

ETC Search numbers for triangle 6-9-13:

{12.5795546363, 1.16658629459, -2.97292047725}, 

{0.985171152116, 10.6233155589, -4.16863297521}

 

[César Lozada]

Starting from Francisco’s result:

 

P1 [= ETC X(46357)] = 1st INTERCEPT (DISTINCT OF X(3))  OF LINE X(3)X(2574) AND McCAY CUBIC

= a*(2*OH*(OH-3*R)*S*SA*a+((S^2-3*SB*SC)*OH*b*c+(3*S^2-2*SB*SC-(18*R^2-5*SA)*SA)*S*a)*K) : :,

where K=OH*(OH-3*R)*sqrt(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))/(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))

 

= lies on cubics K003, K019, K187, K376, K443, K810, K851; curves Q007, Q008, Q009, Q010, Q020, Q063, Q113 and these lines: {3, 2574}

= reflection of P2 in X(3)

= isogonal conjugate of P2

= X(3)-vertex conjugate of-P2

= [ 12.5795546362768000, 1.1665862945942500, -2.9729204772470700 ]

 

P2 [= ETC X(46358)] = 2nd INTERCEPT (DISTINCT OF X(3))  OF LINE X(3)X(2574) AND McCAY CUBIC

= a*(2*OH*(OH-3*R)*S*SA*a-((S^2-3*SB*SC)*OH*b*c+(3*S^2-2*SB*SC-(18*R^2-5*SA)*SA)*S*a)*K) : :,

where K=OH*(OH-3*R)*sqrt(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))/(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))

 

= lies on cubics K003, K019, K187, K376, K443, K810, K851; curves Q007, Q008, Q009, Q010, Q020, Q063, Q113 and these lines: {3, 2574}

= reflection of P1 in X(3)

= isogonal conjugate of P1

= X(3)-vertex conjugate of-P1

= [ 0.9851711521159160, 10.6233155588686000, -4.1686329752088900 ]

 


[Bernard Gibert]:
 

Foci of the inconic with center O, mentioned in page K003.

Imaginary foci as well

*****************************|

 

X(46357) = 1ST INTERCEPT, OTHER THAN X(3), OF LINE X(3)X(2574) AND McCAY CUBIC

Barycentrics    a*((2*S*b*c*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*OH-a*((b^2+c^2)*a^6-(3*b^4-2*b^2*c^2+3*c^4)*a^4+(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^2-(b^4+3*b^2*c^2+c^4)*(b^2-c^2)^2))*K+2*S*a*(-2*(-a^2+b^2+c^2)*S*OH+3*a*b*c*(-a^2+b^2+c^2))*OH) : :
Barycentrics    a*(2*OH*(OH-3*R)*S*SA*a+((S^2-3*SB*SC)*OH*b*c+(3*S^2-2*SB*SC-(18*R^2-5*SA)*SA)*S*a)*K) : :, where K=OH*(OH-3*R)*sqrt(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))/(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))

See Antreas Hatzipolakis, Francisco Javier García Capitán, César Lozada, and Bernard Gibert, euclid 3550.

X(46357) lies on cubics K003, K019, K187, K376, K443, K810, K851; curves Q007, Q008, Q009, Q010, Q020, Q063, Q113; and this line: {3, 2574}

X(46357) = reflection of X(46358) in X(3)
X(46357) = isogonal conjugate of X(46358)
X(46357) = X(3)-vertex conjugate of-X(46358)
X(46357) = 1st focus of the inconic centered at X(3) (see cubic K003)


X(46358) = 2ND INTERCEPT, OTHER THAN X(3), OF LINE X(3)X(2574) AND McCAY CUBIC

Barycentrics    a*(-(2*S*b*c*(2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*OH-a*((b^2+c^2)*a^6-(3*b^4-2*b^2*c^2+3*c^4)*a^4+(b^2+c^2)*(3*b^4-5*b^2*c^2+3*c^4)*a^2-(b^4+3*b^2*c^2+c^4)*(b^2-c^2)^2))*K+2*S*a*(-2*(-a^2+b^2+c^2)*S*OH+3*a*b*c*(-a^2+b^2+c^2))*OH) : :
Barycentrics    a*(2*OH*(OH-3*R)*S*SA*a-((S^2-3*SB*SC)*OH*b*c+(3*S^2-2*SB*SC-(18*R^2-5*SA)*SA)*S*a)*K) : :, where K=OH*(OH-3*R)*sqrt(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))/(2*R*OH^3-S^2-SW^2-18*R^2*(3*R^2-SW))

See Antreas Hatzipolakis, Francisco Javier García Capitán, César Lozada, and Bernard Gibert, euclid 3550.

X(46358) lies on cubics K003, K019, K187, K376, K443, K810, K851; curves Q007, Q008, Q009, Q010, Q020, Q063, Q113; and this line: {3, 2574}

X(46358) = reflection of X(46350) in X(3)
X(46358) = isogonal conjugate of X(46357)
X(46358) = X(3)-vertex conjugate of-X(46357)
X(46358) = 2nd focus of the inconic centered at X(3) (see cubic K003)

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...