ΠΩΣ ΜΕΤΑΒΑΙΝΟΥΜΕ ΑΠΟ ΤΑ ΚΛΑΣΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ ΝΕΩΤΕΡΑ
Δέκα χρόνια αργότερα κάνανε μία δεύτερη έκδοση "επαυξημένη"
Μία από τις "επαυξήσεις" ήταν η αναδημοσίευση της ανακοίνωσης (*) του Δ. Γκιόκα στο Διαβαλκανικό Συνέδριο Μαθηματικών (Αθήνα, 1934):
M. D. Ghiocas, Sur un théorème de la théorie du triangle. Actes Congres Interbalkan Math., Athenes (1934) 103-104.
ΨΗΦ. Ghiocas
ΨΗΦ. GHIOKAS από ACTES
Το θεώρημα, με το οποίο ο Δ. Γκιόκας αποδεικνύει το θεώρημα Morley, και δυο δικούς μου γεωμετρικούς τόπους, το είχα στείλει τη λίστα μου γεωμετρίας
Hyacinthos 26627
O César Lozada μελέτησε τον πρώτο από τους γεωμετρικούς τόπους και βρήκε και δύο νέα κέντρα του τριγώνου
Hyacinthos 26655
Τα νέα κέντρα συμπεριελήφθησαν στην ETC:
X(14813) = 1st GHIOCAS-LOZADA-EULER POINT
X(14814) = 2nd GHIOCAS-LOZADA-EULER POINT
(*) Βλέπε ΔΕΛΤΙΟΝ ΣΜΔΜΕ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου