Τετάρτη 22 Μαρτίου 2023

ΠΡΟΒΛΗΜΑ ΤΟΥ PHILIPPE DE LA HIRE

José María Pedret, UN PROBLEMA DE PHILIPPE DE LA HIRE.

ΨΗΦ. José María Pedret

Page 10
Francisco Javier García Capitán, en cuanto a una resolución trigonométrica del problema de diferencias, me traslada lo siguiente de Anteas Hatzipolakis desde Hyacinthos:

Reference: Hyacinthos 17545

 

17545

 → 

Re: Mathesis June 1926, page 286

 

xpolakis

 

Apr 20, 2009

 

«»
Dear Francisco

I don't have access to Mathesis, but a possible
trigonometric resolution of the problem is:

b-c = 2R(sinB-sinC) = 2R * 2sin((B-C)/2)cos((B+C)/2) =
4Rsin((B-C)/2)sin(A/2)

h_a = 2RsinBsnC = R[cos(B-C) - cos(B+C)] = R[cos(B-C) + cosA] =

R[[1-2sin^2((B-C)/2)] + cosA]

two equations with two unknown: R, sin((B-C)/2)

APH

 
--- In Hyacinthos@yahoogroups.com, "garciacapitan" <garciacapitan@...> wrote:
>
> Dear friends,
>
> I am interested in the trigonometric solution given in the magazine Mathesis, June 1926, page 286 of construction problem A, b-c, h_a.
>
> Has anybody access to this source?
>
> Thanks in advance
>
 

Mail Antreas P. Hatzipolakis

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...