Let ABC be a triangle, P a point and A'B'C' the cevian triangle of P.
Denote:
A* = BC /\ (Reflection of B'C' in AA')
B* = CA /\ (Reflection of C'A' in BB')
C* = AB /\ (Reflection of A'B' in CC')
Which is the locus of P such that the A*,B*,C* are collinear?
The incenter I is on the locus
Antreas P; Hatzipolakis, 13 March 2013
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου