Τετάρτη 6 Μαρτίου 2013

CONCURRENT EULER LINES

Let ABC be a triangle and A'B'C' the cevian triangle of P = I

Denote:

Ab, Ac = the orthogonal projections of A on BB',CC', resp.

Bc, Ba = the orthogonal projections of B on CC',AA', resp.

Ca, Cb = the orthogonal projections of C on AA',BB', resp.

Abc = the orthogonal projection of Ab on CC'

Acb = the orthogonal projection of Ac on BB'

Bca = the orthogonal projection of Bc on AA'

Bac = the orthogonal projection of Ba on CC'

Cab = the orthogonal projection of Ca on BB'

Cba = the orthogonal projection of Cb on AA'

For P = I, we have Bca = Cba =: A*, Cab = Acb =: B* and Abc = Bac =: C*

The Euler lines of AB*C*, BC*A*, CA*B* are concurrent.

Which is the locus of P such that the Euler lines of AAbcAcb, BBcaBac, CCabCba are concurrent?

Note: The Euler Lines of AAbAc, BBcBa, CCaCb are concurrent at Feuerbach point.

(APH, Hyacinthos)

Orthic Triangle Version:

Let ABC be a triangle and A'B'C' the cevian/pedal triangle of P = H (orthic triangle)

Denote:

A'b, A'c = the orthogonal projections of A' on BB',CC', resp.

B'c, B'a = the orthogonal projections of B' on CC',AA', resp.

C'a, C'b = the orthogonal projections of C' on AA',BB', resp.

A'bc = the orthogonal projection of A'b on CC'

A'cb = the orthogonal projection of A'c on BB'

B'ca = the orthogonal projection of B'c on AA'

B'ac = the orthogonal projection of B'a on CC'

C'ab = the orthogonal projection of C'a on BB'

C'ba = the orthogonal projection of C'b on AA'

For P = H, we have B'ca = C'ba =: A*, C'ab = A'cb =: B* and A'bc = B'ac =: C*

The Euler lines of A'B*C*, B'C*A*, C'A*B* are concurrent.

Let A'B'C' be the cevian (or pedal) triangle of P. Which is the locus of P such that the Euler lines of A'A'bcA'cb, B'B'caB'ac, C'C'abC'ba are concurrent?

Summary:

Let ABC be a triangle, P a point and A'B'C' the cevian triangle of P.

1. Denote:

Ab, Ac = the orthogonal projections of A on BB',CC', resp.

Bc, Ba = the orthogonal projections of B on CC',AA', resp.

Ca, Cb = the orthogonal projections of C on AA',BB', resp.

Abc = the orthogonal projection of Ab on CC'

Acb = the orthogonal projection of Ac on BB'

Bca = the orthogonal projection of Bc on AA'

Bac = the orthogonal projection of Ba on CC'

Cab = the orthogonal projection of Ca on BB'

Cba = the orthogonal projection of Cb on AA'

Which is the locus of P such that the Euler lines of AAbcAcb, BBcaBac, CCabCba are concurrent?

2. Denote:

A'b, A'c = the orthogonal projections of A' on BB',CC', resp.

B'c, B'a = the orthogonal projections of B' on CC',AA', resp.

C'a, C'b = the orthogonal projections of C' on AA',BB', resp.

A'bc = the orthogonal projection of A'b on CC'

A'cb = the orthogonal projection of A'c on BB'

B'ca = the orthogonal projection of B'c on AA'

B'ac = the orthogonal projection of B'a on CC'

C'ab = the orthogonal projection of C'a on BB'

C'ba = the orthogonal projection of C'b on AA'

Which is the locus of P such that the Euler lines of A'A'bcA'cb, B'B'caB'ac, C'C'abC'ba are concurrent?

Antreas P. Hatzipolakis, 6 March 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...