Πέμπτη 14 Μαρτίου 2013

MCCAY CUBIC (Circumcevian Triangle) +

Let ABC be a triangle, P a point, A'B'C' the pedal triangle of P, A"B"C" its antipodal triangle (in the pedal circle) and A*B*C* the circumcevian triangle of P.

Which is the locus of P such that A*B*C*, A"B"C" are perspective?

Antreas P. Hatzipolakis, Hyacinthos #21738

--------------------

A*B*C*, A"B"C" are perspective if P is on the circumcircle (the circumcevian triangle degenerates) or on the K003="McCay cubic" or on K191="circumcircle pedal cubic".

If P is on K191="circumcircle pedal cubic", the perspector of the triangles A*B*C* and A"B"C" is a point in the circumcircle.

Angel Montesdeoca, Hyacinthos #21743

The cubic is S^2 xyz + CyclicSum[ a^2 y z (c^2 y + b^2 z)] = 0 (not K191) and will be K634 in Bernard Gibert's list.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...