Antreas P. Hatzipolakis, Hyacinthos #21746
------------------------------------
I get the cubic
S^2 xyz + CyclicSum[ a^2 y z (c^2 y + b^2 z)] = 0.
Francisco Javier, Hyacinthos #21747
------------------------------------
Yes, if P is on an octic or on the cubic K191="circumcircle pedal cubic, nK(X6, X6,?)".
If P is on the cubic K191, then the point of the contact of the two circles are on the circumcircle.
K191: S^2 xyz + CyclicSum[ a^2 y z (c^2 y + b^2 z)] = 0,
or equivalently
K191: S^2 xyz + CyclicSum[ a^2 x (c^2 y^2 + b^2 z^2)] = 0.
S= 2*area(ABC) (In CTC of Bernad Gibert, S=area(ABC))
Angel Montesdeoca, Hyacinthos #21750
The cubic S^2 xyz + CyclicSum[ a^2 y z (c^2 y + b^2 z)] = 0 is not K191
It will be K634 in Bernard Gibert's list
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου