Τετάρτη 13 Φεβρουαρίου 2013

REFLECTING PEDAL CIRCLE


Let ABC be a triangle, Q a point, QaQbQc the pedal triangle of Q, (X) the circumcircle of QaQbQc (=pedal circle of Q), P a point on the OQ line and PaPbPc the pedal triangle of P.

Denote:

(X1), (X2), (X3) the reflections of (X) in OPa,OPb,OPc, resp.

A'B'C' = the triangle bounded by the radical axes of ((O),(X1)),((O),(X2)),((O),(X3))

The triangles A'B'C', X1X2X3 are perspective at a point Qp.

Antreas P. Hatzipolakis, 13 Feb. 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...