Which is the locus of P such that ABC, A"B"C" are perspective?
Antreas P. Hatzipolakis, 7 Feb. 2013
****************************
A ' = (a^2:-(b^2-c^2):b^2-c^2),
If P = (u:v:w), then
A'' = (((b^2-c^2)u+a^2v)((b^2-c^2)u-a^2w) : b^2(v+w)((b^2-c^2)u+a^2v) : -c^2(v+w)((b^2-c^2)u-a^2w))
etc.
A''B''C'' and ABC are perspective if and only if P lies on the Euler line. The perspector Q also lies on the Euler line.
If OP P PH = t : 1-t, then OQ : QH = (1+t) : -8t\cos A\cos B\cos C Here are some examples:
P Q
------------
G X(25)
O H
H X(24)
N X(3518)
L O
X(21) X(28)
X(22) G
X(23) X(468)
X(186 X(403)
Paul Yiu, Hyacinthos #12503
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου