Δευτέρα 11 Φεβρουαρίου 2013

REFLECTING NPCs

Let ABC be a triangle.

1. Let (N1),(N2),(N3) be the reflections of the NPC (N) in the sidelines BC,CA,AB, resp. and A'B'C' the triangle bounded by the radical axes of ((O),(N1)), ((O),(N2)), ((O),(N3)), resp.
The triangles ABC, A'B'C' are perspective.


2. Let HaHbHc be the orthic triangle, (N1),(N2),(N3) the reflections of the NPC (N) in the altitudes HHa,HHb,HHc, resp. and and A'B'C' the triangle bounded by the radical axes of ((O),(N1)), ((O),(N2)), ((O),(N3)), resp.
The triangles HaHbHc, A'B'C' are perspective.

3. Let OaObOc be the medial triangle [pedal tr. of O], (N1),(N2),(N3) the reflections of the NPC (N) in the perp. bisectors OOa,OOb,OOc, resp. and and A'B'C' the triangle bounded by the radical axes of ((O),(N1)), ((O),(N2)), ((O),(N3)), resp.
The triangles ABC, A'B'C' are perspective.

Antreas P. Hatzipolakis, 11 Febr. 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...