Κυριακή 12 Μαΐου 2013

SIX CENTROIDS - A CONIC

Let ABC be a triangle and A'B'C', A"B"C" the cevian triangles of H,G, resp. (orthic, medial tr.).

Denote:

G1,G2,G3 = the centroids of A'B"C", B'C"A", C'A"B", resp.

g1,g2,g3 = the centroids of A"B'C', B"C'A', C"A'B', resp.

The circumcenter of the circle (G1G2G3) is the common circumcenter of A'B'C' and A"B"C", the N of ABC.

The circle (G1G2G3) passes through G.

1. The triangles G1G23, g1g2g3 are perspective.

The six centroids lie on a conic (rectangular hyperbola) with center P, the perspector of the triangles.

2. The NPC centers of the triangles G1g2g3, G2g3g1, G3g1g2, G1G2G3, g1g2g3 concur at P (center of the hyperbola)

Antreas P. Hatzipolakis, 12 May 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...