Κυριακή 12 Μαΐου 2013

SIX CENTROIDS - A CONIC

Let ABC be a triangle and A'B'C', A"B"C" the cevian triangles of H,G, resp. (orthic, medial tr.).

Denote:

G1,G2,G3 = the centroids of A'B"C", B'C"A", C'A"B", resp.

g1,g2,g3 = the centroids of A"B'C', B"C'A', C"A'B', resp.

The circumcenter of the circle (G1G2G3) is the common circumcenter of A'B'C' and A"B"C", the N of ABC.

The circle (G1G2G3) passes through G.

1. The triangles G1G23, g1g2g3 are perspective.

The six centroids lie on a conic (rectangular hyperbola) with center P, the perspector of the triangles.

2. The NPC centers of the triangles G1g2g3, G2g3g1, G3g1g2, G1G2G3, g1g2g3 concur at P (center of the hyperbola)

Antreas P. Hatzipolakis, 12 May 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...