Παρασκευή 17 Μαΐου 2013

ORTHOCENTERS

Let ABC be a triangle and A'B'C' the cevian triangle of P = I.

Denote:

Ab,Ac = the reflections of A' in BB', CC', resp.

Bc,Ba = the reflections of B' in CC', AA', resp.

Ca,Cb = the reflections of C' in AA', BB', resp.

Ha, Hb, Hc = the orthocenters of the triangles A'AbAc, B'BcCa, C'CaCb, resp.

H'a, H'b, H'c = the reflections of Ha, Hb, Hc in AA', BB', CC', resp.

Conjecture 1.:

The triangles ABC, HaHbHc are perspective.

Conjecture 2.:

The points H'a, H'b, H'c are collinear

Locus of variable P such that

1. ABC, HaHbHc are perspective

2. H'a, H'b, H'c are collinear?

Antreas P. Hatzipolakis, 17 May 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...