Παρασκευή 3 Μαΐου 2013

MORLEY

Let ABC be a triangle and A'B'C' the internal Morley triangle. The trisectors of the angle BA'C intersect BC at Ab,Ac near to B,C, resp. Similarly Bc,Ba and Ca,Cb.

Denote:

A1 = AbBc /\ AcCb

A2 = BaCb /\ CaBc

Similarly B1,B2 and C1, C2.

Conjecture:

The lines A1A2,B1B2,C1C2 are concurrent.

Antreas P. Hatzipolakis, 3 May 2013

Conjecture 2: The same for A'B'C' = the adjunct triangle.

Antreas P. Hatzipolakis, 4 May 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...