To construct triangle ABC if are given a, B - C, h_b + h_c, where h_b, h_c are the altitudes BB', CC'.
Solution 1.
Analysis:
Let ABC be the triangle with BC = a, B-C, BB' + CC' = h_b + h_c given.
Let D be the point on CA such that AD = AB with the A between D,C
(DC = DA + AC = AB + AC).
The triangle ABD is isosceles with ang(ADB) = ang(ABD) = A/2.
Let E be the orthogonal projection of C on DB.
In the triangle EBC we have:
ang(CEB) = 90 d., BC = a, ang(EBC) = ang(BCD + BDC) = C + (A/2) =
90 - ((B-C)/2) d.
Therefore EC is known, since the triangle EBC can be constructed.
From the similar triangles ECD and B'BD we have:
EC / DC = BB' / BD or
EC / (AB + AC) = BB' / DB (1)
From the similar right triangles ABB', ACC' we have:
BB' / AB = CC' / AC ==>
BB' / AB = CC' / AC = (BB' + CC') / (AB+AC) ==>
BB' = AB(BB' + CC') / (AB + AC) (2)
From (1) and (2) we get:
EC / (BB' + CC') = AB / DB : fixed,
since EC and BB' + CC' are known.
Therefore the triangle ADB "remains similar to itself", that is, it has known angles. Therefore angle A is known, since ang(BDA) = ang(ABD) = A/2
Construction: We leave it to the reader.
Solution 2.
Analysis:
Let h_a = AD, AE be the altitude, angle bisector from A, resp.
The parallel from E to AB intersects AC at Z.
The triangle ZAE is isosceles with EZ = AZ
(since angles ZEA = BAE = EAZ = A/2)
EZ / AB = CZ / CA = (CA - AZ) / CA = (CA - EZ) / CA
==> 1/EZ = 1/b + 1/c (1)
2*area(ABC) = ah_a = bh_b = ch_c ==>
h_2 + h_3 = ah_a (1/b + 1/c) (2)
From (1) and (2) we get that
h_a / EZ = AD / EZ = (h_b + h_c) / a : fixed (3)
The triangle DAE has known angles:
ang(ADE) = 90 d., ang(DAE) = (B-C)/2, (DEA) = 90 - ((B-C)/2)
Therefore AD / AE = h_a / AE is fixed. (4)
From (3) and (4) by division we get that:
AE / EZ is fixed.
Now, in the isosceles triangle ZAE we have that AE / EZ is fixed, therefore "it remains similar to itself", that is its angles are known. So A = 2*ang(EAZ) is known.
Construction: We leave it to the reader.
Problem for the reader:
To construct ABC if are given a, B-C, h_c - h_b.
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου