Τρίτη 20 Ιουλίου 2010
THREE CONCURRENT CIRCLES
5. Let 123 be a triangle, 4 a point inside 123 and (1') the circle touching the circles (134), (124) externally and the circle (234) internally at 5, (2') the circle touching the circles (214),(234) externally and the circle (314) internally at 6 and (3') the circle touching the circles (324),(314) externally and the circle (124) internally at 7.
The circles (167),(275),(356) concur at a point 8.
Variation:
Let (0) be the circle touching internally the circles (234), (314), (124) at 5,6,7 resp.
The circles (167),(275),(356) concur at a point 8.
Note:
If 4 is not inside triangle 123, but in the negative side of 23 (ie the side not containing 1), then (1') is the circle touching (314),(124) internally and (234) externally at 5.
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
ETC
X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics 4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου