Let P be a point, 1,2,3,4 four lines passing through P and 0 a line intersecting the four lines at four distinct and real points (ie not passing through P and not parallel to some one of the four lines)
Denote:
r_ij := the inradius of the triangle bounded by the lines (0,i,j)
THEOREM
1/r_14 =
[(1/(r_12*r_24)) - (1/(r_13*r_34))] /
[((1/r_12) + (1/r_24)) - ((1/r_13) + (1/r_34))]
Simple application of the altitude formula found HERE.
Exercise for the reader:
Find the formula of the r_23
Σάββατο 25 Δεκεμβρίου 2010
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου