Τετάρτη 4 Ιουνίου 2014

CONCYCLIC CIRCUMCENTERS - 2

Let ABC be a triangle and A'B'C' the cevian triangle of I.

Denote:

Ab,Ac = the reflections of A' in CC',BB', resp. (lying on AC, AB, resp.)

Similarly Bc,Ba = the reflections of B' in AA',CC', resp. and Ca,Cb = the reflections of C' in BB',AA', resp.

A1B1C1 = the antipedal triangle of I wrt triangle A'AbAc

Similarly A2B2C2 = the antipedal triangle of I wrt triangle B'BcBa and A3B3C3 = the antipedal triangle of I wrt triangle C'CaCb,

Oa,Ob,Oc = the circumcenters of the triangles A1B1C1, A2B2C2, A3B3C3, resp.

The circumcenter O of ABC and the circumcenters Oa,Ob,Oc of A1B1C1,A2B2C2,A3B3C3, resp. are concyclic.

Which point is the center X of the circle?

Antreas P. Hatzipolakis, 4 June 2014

X is X(5495)

Peter Moses 5 June 2014


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...