Πέμπτη 29 Μαΐου 2014

APPLES ( A problem in Facebook)

Μια φορά περνούσανε τρεις από έναν τόπο που ήταν μια μηλιά φορτωμένη με μήλα. Κόβει ο ένας το ένα τρίτο των μήλων. Απ' όσα μείνανε κόβει ο δεύτερος το ένα τρίτο. Και απ' όσα μείνανε κόβει ο τρίτος το ένα τρίτο. Όσα μείνανε τελικά τα μοιράσανε με τέτοιο τρόπο που και οι τρεις πήρανε τον ίδιο αριθμό μήλων συνολικά.

Πόσα μήλα είχε η μηλιά και πόσα πήρε ο καθένας; Ζητείται η μικρότερη λύση.

Ας υποθέσουμε ότι είχε x μήλα. Ο πρώτος κόβει x/3 και μένουν στην μηλιά x - (x/3) = 2x/3. Ο δεύτερος κόβει το 1/3 από αυτά δηλαδή (2x/3)/3 = 2x/9. Μένουν τώρα στη μηλιά (2x/3) - (2x/9) = 4x/9. Από αυτά ο τρίτος κόβει το 1/3 δηλαδή (4x/9)/3 = 4x/27. και μένουν στην μηλιά πάνω 4x/9 - 4x/27 = 8x/27.

Συνοψίζω: Ο πρώτος έκοψε x/3, ο δεύτερος 2x/3, ο τρίτος 4x/27 και μείνανε στην μηλιά 8x/27.

Αυτά που μείνανε θα τα μοιράσουν σε τρία μέρη a,b,c έτσι ώστε ο πρώτος να πάρει a, o δεύτερος b και ο τρίτος c και να έχουν τον ίδιο αριθμό μήλων τελικά ο καθένας.

Έτσι έχουμε:

(x/3)+ a = (2x/3) + b = (4x/27) + c. Επειδή τώρα ζητούμε τον μικρότερο αριθμό μήλων, θέτουμε στον a την μικρότερη ακέραιη θετική τιμή δηλαδή 0. Και οι εξισώσεις μας γίνονται: x/3 = (2x/3) + b = (4x/27) + c. Λύνοντας ως προς b και c βρίσκουμε ότι:

b = x / 9 και c = 5x / 27. Επειδή τώρα ζητούμε τον μικρότερο ακέραιο x έτσι ώστε και οι b = x / 9 ,c = 5x / 27 να είναι ακέραιοι, αυτός είναι ο 27. Έτσι ο πρώτος πήρε 9 + 0 ο δεύτερος 8 + 1 και ο τρίτος 4 + 5.

Facebook

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...