Παρασκευή 3 Φεβρουαρίου 2012

X275


Let ABC be a triangle, P a point, P1P2P3 the cevian triangle of P and PaPbPc the cevian triangle of P with respect the triangle P1P2P3.


Denote

R1 = the radical axis of the circles (BPbP3) and (CPcP2)

R2 = the radical axis of the circles (CPcP1) and (APaP3)

R3 = the radical axis of the circles (APaP2) and (BPbP1)

For which P's the lines R1,R2,R3 are concurrent ?

APH, 3 February 2012

---------------------------------------------------------------

It is a 15th degree locus through H. For P=H, the intersection point is X275.

Francisco Javier García Capitán
3 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics    4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...