Παρασκευή 3 Φεβρουαρίου 2012

X275


Let ABC be a triangle, P a point, P1P2P3 the cevian triangle of P and PaPbPc the cevian triangle of P with respect the triangle P1P2P3.


Denote

R1 = the radical axis of the circles (BPbP3) and (CPcP2)

R2 = the radical axis of the circles (CPcP1) and (APaP3)

R3 = the radical axis of the circles (APaP2) and (BPbP1)

For which P's the lines R1,R2,R3 are concurrent ?

APH, 3 February 2012

---------------------------------------------------------------

It is a 15th degree locus through H. For P=H, the intersection point is X275.

Francisco Javier García Capitán
3 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...