Δευτέρα 13 Φεβρουαρίου 2012

Euler Line


Let ABC be a triangle, Aa,Bb,Cc the orth. projections of A,B,C on the Euler line, resp., A1B1C1, A2B2C2 the medial, orthic triangles, resp. and P a point.


Let A'B'C', A"B"C" be the circumcevian triangles of P with respect the triangles A1B1C1, A2B2C2, resp.

Which is the locus of P such that the lines:

1. A'Aa, B'Bb, C'Cc

2. A"Aa, B"Bb, C"Cc

are concurrent?

The Euler line + ??

----------------------

Generalization:

P,P* = two isogonal conjugate points.

A1B1C1, A2B2C2 = the pedal triangles of P,P*, resp.

Aa, Bb, Cc = the orth. projections of A,B,C on PP*, resp.

A'B'C', A"B"C" = the circumcevian triangles of a point Q with respect A1B1C1, A2B2C2, resp.

Which is the locus of Q such that the lines:

1. A'Aa, B'Bb, C'Cc

2. A"Aa, B"Bb, C"Cc

are concurrent?

Is it the line PP* + ??

Locus of point of concurrence? Common Circumcircle of A1B1C1 and A2B2C2 + ??

APH, 13 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...