Let ABC be a triangle, A'B'C' the orthic triangle, A1B1C1 the cevian triangle of G and A2B2C2 the circumcevian triangle of G with respect A1B1C1.
Denote:
A* = A2O /\ A'N
B* = B2O /\ B'N
C* = C2O /\ C'N
The triangles ABC, A*B*C* are perspective (?)
(perspector on the Euler line?)
Variation:
A** = A2N /\ A'O
B** = B2N /\ B'O
C** = C2N /\ C'O
Are the triangles:
ABC, A**B**C**
A*B*C*, A**B**C**
perspective?
APH, 10 February 2012
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου