Παρασκευή 10 Φεβρουαρίου 2012

Perspective


Let ABC be a triangle, A'B'C' the orthic triangle, A1B1C1 the cevian triangle of G and A2B2C2 the circumcevian triangle of G with respect A1B1C1.


Denote:

A* = A2O /\ A'N

B* = B2O /\ B'N

C* = C2O /\ C'N

The triangles ABC, A*B*C* are perspective (?)
(perspector on the Euler line?)

Variation:

A** = A2N /\ A'O

B** = B2N /\ B'O

C** = C2N /\ C'O

Are the triangles:

ABC, A**B**C**

A*B*C*, A**B**C**

perspective?

APH, 10 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...