Σάββατο 3 Ιουλίου 2010

THREE CONCURRENT CIRCLES

Let 123 be a trianle, 4 a point, and 5,6,7 three points on the circles (423), (431),(412) resp. other than point 4.

Theorem:

The circles (167), (275) and (356) concur at a point (say) 8.


Special Cases:

1. Let the points 4,5,6,7 be concyclic (or collinear). See previous post.

2. Let the points 5,6,7 be the second intersections [= other than the point 4] of the lines 14, 24, 34 with the circles (423),(431),(412) resp.


3. Let the points 5,6,7 be the second intersections [= other than the point 4] of the circles (1,14),(2,24),(3,34) with the circles (423),(431), (412) resp.


4. Let 1',2',3' be the centers of the circles (423),(431),(412), resp. and the points 5,6,7, the second intersections [= other than the point 4] of the circles (42'3'),(43'1'),(41'2') with the circles (423),(431),(412) resp.


Continued 5

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...