Let 123 be a trianle, 4 a point, and 5,6,7 three points on the circles (423), (431),(412) resp. other than point 4.
Theorem:
The circles (167), (275) and (356) concur at a point (say) 8.
Special Cases:
1. Let the points 4,5,6,7 be concyclic (or collinear). See previous post.
2. Let the points 5,6,7 be the second intersections [= other than the point 4] of the lines 14, 24, 34 with the circles (423),(431),(412) resp.
3. Let the points 5,6,7 be the second intersections [= other than the point 4] of the circles (1,14),(2,24),(3,34) with the circles (423),(431), (412) resp.
4. Let 1',2',3' be the centers of the circles (423),(431),(412), resp. and the points 5,6,7, the second intersections [= other than the point 4] of the circles (42'3'),(43'1'),(41'2') with the circles (423),(431),(412) resp.
Continued 5
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Another relationship between Napoleon cubic and Neuberg cubic
Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...

-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου