Παρασκευή 5 Ιουλίου 2013

CONCURRENT CIRCLES - ORTHOCENTERS - ISOGONAL CONJUGATE POINTS


Let ABC be a triangle and P,P* two isogonal conjugate points. Denote: H1,H2,H3 = the orthocenters of PBC, PCA, PAB, resp. and Ha,Hb,Hc = the orthocenters of P*BC, P*CA, P*AB, resp.


The circumcircles of: (1) H1HbHc, H2HcHa, H3HaHb (2) HaH2H3, HbH3H1, HcH1H2 are concurrent.
Antreas P. Hatzipolakis, 5 July 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics    4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...