Παρασκευή 5 Ιουλίου 2013

CONCURRENT CIRCLES - ORTHOCENTERS - ISOGONAL CONJUGATE POINTS


Let ABC be a triangle and P,P* two isogonal conjugate points. Denote: H1,H2,H3 = the orthocenters of PBC, PCA, PAB, resp. and Ha,Hb,Hc = the orthocenters of P*BC, P*CA, P*AB, resp.


The circumcircles of: (1) H1HbHc, H2HcHa, H3HaHb (2) HaH2H3, HbH3H1, HcH1H2 are concurrent.
Antreas P. Hatzipolakis, 5 July 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...