Κυριακή 30 Ιουνίου 2013

ANOPOLIS CIRCLE (2)

Let ABC be a triangle and L1,L2,L3 the Euler lines of IBC,ICA,IAB, resp. (concurrent at Schiffler point).
Denote:
E1 = the point of concurrence of the reflections of L1 in the sidelines of IBC (on the circumcircle of IBC)
E2 = the point of concurrence of the reflections of L2 in the sidelines of ICA (on the circumcircle of ICA)
E3 = the point of concurrence of the reflections of L3 in the sidelines of IAB (on the circumcircle of IAB)

The points E1,E2,E3 lie on the circle with diameter IO.
See also ANOPOLIS CIRCLE (1)
Antreas P. Hatzipolakis, 30 June 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...