Τρίτη 1 Φεβρουαρίου 2011

TRIANGLE CONSTRUCTION A, a, h_a + h_b + h_c


To construct triangle ABC if are given A, a, h_a + h_b + h_c (sum of altitudes)

We have:

A and a known ==> R is known.

h_a + h_b + h_c = 2R(bc + ca + ab)

==> bc + ca + ab is known.

Solution 1:

bc + ca + ab = a(b+c) + bc := k^2 (known)

a^2 = b^2 + c^2 - 2bc.cosA = (b+c)^2 - 2bc(1 + cosA) = (b+c)^2 - 4bc(cos(A/2))^2

Denote b+c := X, bc := Y^2

==>

aX + Y^2 = k^2

a^2 = X^2 - 4Y^2(cos(A/2)^2

==> X^2 + 4a(cos(A/2)^2.X - 4k^2(cos(A/2)^2 - a^2 = 0

==> b+c is known and also bc is known.

==> b,c are known.

Solution 2:

We have:

2(bc + ca + ab) = (b + c)^2 - (b^2 + c^2) + 2a(b + c) (1)

Let ABC be the triangle in question. The bisector AD of A intersects the circumcircle at E. Let EF be the diameter perpendicular to BC at its midpoint M (see figure).

Denote:

AE = d, AM = m_a,

EB = EC = m, known

AF = y

EM = x, MF = 2R - x = z, known

(since the isosceles triangles EBC, FBC are known: BC = a and have known angles.)


We have:

y^2 = (2R)^2 - d^2 (from the right triangle AEF)) (2)

m(b + c) = ad (by Ptolemy Theorem in the cyclic quadril. ABEC)

==> b + c = am / d (3)

b^2 + c^2 = 2(m_a)^2 + (a^2 / 2) (Theorem of median in ABC) (4)

zd^2 + xy^2 = 2R(m_a)^2 + 2Rxz (by Stewart Theorem in AFE) (5)

(2) and (5) ==> zd^2 + x((2R)^2 - d^2) = 2R(m_a)^2 + 2Rxz (6)

(1) and (3), (4), (6) ==>

2(bc + ca + ab) = (a/m)^2d^2 - ((z-x)/R)d^2 - 4Rx + 2xz - (a^2)/2 + (2a^2/m)d

==>

[(z-x)/R - (a/m)^2]d^2 - (2a^2/m)d - 2xz + 4Rx + (a^2/2) + 2(bc + ca + ab) = 0

==> AE = d is known.

Construction:

We construct the isosceles triangle EBC with BC = a, BEC = 180 - A, BE = CE. The circle (E, d) intersects the circumcircle of EBC at A.





Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...