A Corollary of SQUARE PROBLEM
Let ABCD be a square, E,E' two points on BC such that DEE' is an equilateral triangle and I,I' the midpoints of BE,BE', resp. Denote:
F := AE /\ DC, F' := AE' /\ DC
M := IF /\ DE, M' := I'F' /\ D'E'
K := IF /\ I'F'
N := AD /\ IF, N' := AD /\ I'F'
The triangles IEM, I'E'M', KII', DMN, DM'N', KNN' are equilateral.
Antreas
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου