ENGLISH_TRANSLATION
MY_POST_TO_HYACINTHOS
On Sun, 19 Nov 2000 I wrote:
>
> /
> angle w / angle q
> /
> / I_0
> J_0 /
> / I_1
> J_1 / I_2
>--------------------------/-----------------------------
>
>(I_0, r_0), (I_1, r_1), (I_2,r_2),...... is a decreasing sequence of circles
>inscribed in the angle q, and (I_n) touches externally both (I_n-1, I_n+1)
>
>(J_0, R_0), (J_1,R_1), .... is a similar sequence but in the angle w(omega)
>
>Now, if R_0 = r_0, and R_1 = r_2, find the angles.
Here is the solution:
We have:
1 - sin(q/2) 1 - sin(w/2)
r_n = r_0 *(-------------)^n, R_n = R_0 * (------------)^n
1 + sin(q/2) 1 + sin(w/2)
If r_0 = R_0, r_2 = R_1 we get:
1 - sin(q/2) (1 - sin(w/2)
(------------)^2 = ------------- (1)
1+ sin(q/2) (1 + sin(w/2)
q + w = Pi ==> sin(w/2) = cos(q/2) := a & cos(w/2) = sin(q/2) := b
a, b in (0,1)
1 - b 1 - a 2b
(1) ==> (-------) ^ 2 = ------- ==> a = -------- (2)
1 + b 1 + a 1 + b^2
We have: a^2 + b^2 = 1 (3)
(2) and (3) ==> b^6 + b^4 + 3b^2 - 1 = 0 ==>
(b^3 + b^2 + b - 1)(b^3 - b^2 + b + 1) = 0
and since 0 < b < 1, ==> b^3 + b^2 + b - 1 = 0
The acceptable root of this equation is that one in (0,1).
This root is 0.5436890126........, a well-known constant, namely:
T_n
lim --------
n -->+oo T_(n+1)
where T_n is the Tribonacci sequence: 0,1,1,2,4,7,13,24,44,81,149,274,504,...
(T_1 = 0, T_1 = 1, T_2 = 1, T_(n+2) = T_n + T_(n+1) + T_(n+2))
cos(w/2) = b ==> w = 114d 7' 47",13....
Steven Finch, in his page "Cubic Variations of the Golden Mean" at:
http://www.mathsoft.com/asolve/constant/gold/cubic.html
T_(n+1)
asks about 1/b = lim --------- = 1.839286.... :
n --> +oo T_n
<quote>
[T]he ratio A/B is 1.8392867552.... Are other geometric interpretations
of this constant possible?
</quote>
Welll... the above is one!
Other references for Tribonacci Constant:
Simon Plouffe's page, containing 2000 digits of Tribonacci constant
http://plouffe.fr/simon/constants/tribo.txt
Brian Hayes: Computing Science. The Vibonacci Numbers
American Scientist July-August, Volume 87, No. 4
Antreas
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου