Dao Thanh Oai:
Let ABC be a triangle and L1,L2,L3 three parallel lines through A,B,C respectively. The reflections of L1,L2,L3 in BC,CA,AB, resp. bound a triangle A1B1C1. The Euler line of A1B1C1 passes through a fixed point (as the three lines L1,L2,L3 move around A,B,C, being parallel)
Francisco Javier García Capitán:
The point is (f(a,b,c):f(b,c,a):f(c,a,b)) where f(a,b,c) is
a^22 - 8 a^20 b^2 + 28 a^18 b^4 - 56 a^16 b^6 + 70 a^14 b^8 -
56 a^12 b^10 + 28 a^10 b^12 - 8 a^8 b^14 + a^6 b^16 - 8 a^20 c^2 +
42 a^18 b^2 c^2 - 92 a^16 b^4 c^2 + 106 a^14 b^6 c^2 -
62 a^12 b^8 c^2 + 7 a^10 b^10 c^2 + 13 a^8 b^12 c^2 -
8 a^6 b^14 c^2 + 4 a^4 b^16 c^2 - 3 a^2 b^18 c^2 + b^20 c^2 +
28 a^18 c^4 - 92 a^16 b^2 c^4 + 113 a^14 b^4 c^4 - 62 a^12 b^6 c^4 +
17 a^10 b^8 c^4 - 9 a^8 b^10 c^4 + 5 a^6 b^12 c^4 - 6 a^4 b^14 c^4 +
13 a^2 b^16 c^4 - 7 b^18 c^4 - 56 a^16 c^6 + 106 a^14 b^2 c^6 -
62 a^12 b^4 c^6 + 4 a^10 b^6 c^6 + 4 a^8 b^8 c^6 + 8 a^6 b^10 c^6 -
6 a^4 b^12 c^6 - 18 a^2 b^14 c^6 + 20 b^16 c^6 + 70 a^14 c^8 -
62 a^12 b^2 c^8 + 17 a^10 b^4 c^8 + 4 a^8 b^6 c^8 - 12 a^6 b^8 c^8 +
8 a^4 b^10 c^8 + 3 a^2 b^12 c^8 - 28 b^14 c^8 - 56 a^12 c^10 +
7 a^10 b^2 c^10 - 9 a^8 b^4 c^10 + 8 a^6 b^6 c^10 + 8 a^4 b^8 c^10 +
10 a^2 b^10 c^10 + 14 b^12 c^10 + 28 a^10 c^12 + 13 a^8 b^2 c^12 +
5 a^6 b^4 c^12 - 6 a^4 b^6 c^12 + 3 a^2 b^8 c^12 + 14 b^10 c^12 -
8 a^8 c^14 - 8 a^6 b^2 c^14 - 6 a^4 b^4 c^14 - 18 a^2 b^6 c^14 -
28 b^8 c^14 + a^6 c^16 + 4 a^4 b^2 c^16 + 13 a^2 b^4 c^16 +
20 b^6 c^16 - 3 a^2 b^2 c^18 - 7 b^4 c^18 + b^2 c^20
Reference: Facebook Group "Short Mathematical Idea"
Let ABC be a triangle and L1,L2,L3 three parallel lines through A,B,C, resp. and let A'B'C' be the triangle bounded by the reflections of L1,L2,L3, in BC,CA,AB, resp.
Where the lines L1,L2,L3 move around A,B,C, being parallel, the Euler line of A'B'C' passing through a point Q which we shall call the Parry-Pohoata point. Barycentric coordinates for Q, of degree 22 in a,b,c, were found by J. F. Garcia Captitán (Hyacinthos #15827, Nov. 19, 2007) and are included in Pohoata's article Cosmin Pohoata, "On the Parry reflection point," Forum Geometricorum 8 (2008), 43-48
Angel Montesdeoca, Hyacinthos #22171
Conjecture:
Let A'B'C' be the antimedial triangle of ABC. The reflections of the parallel lines L1,L2,L3 trough A,B,C, resp. in the sidelines of A'B'C' (instead of ABC) bound a triangle whose the Euler line passes through a fixed point.
In general:
Let ABC, A'B'C' be two homothetic triangles. Let L1,L2,L3 be three parallel lines through A,B,C, resp. The reflections of L1,L2,L3 in the sidelines B'C',C'A',A'B', resp. of A'B'C' bound a triangle whose the Euler line passes through a fixed point.
Antreas P. Hatzipolakis, 21 April 2014
Special case:
If A’B’C’ is the antimedial triangle of ABC, the fixed point on Euler lines has trilinear coordinates:
(2*f(6)+6*f(4)+14*f(2)+7)*g(1)
-2*(2*f(5)+2*f(3)+5*f(1))*g(2)
+(2*f(2)+2*f(4)+3)*g(3)
-2*(f(3)+f(1))*g(4)
-(f(7)+f(5)+6*f(3)+6*f(1)) : :
Where f(n)=cos(n*A) and g(n)=cos(n*(B-C))
This point is on line (1141,3484) and has ETC-6-9-13 numbers:
(4.923838044604385591130, 4.248841971282335390013, -1.573382134182338747412)
César Lozada, Hyacinthos #22165
Radical axes:
Let (Oa), (Na) be the circumcenter, NPC center, resp. of the triangle A1B1C1 (=the triangle bounded by the reflections in BC,CA,AB of the parallels through A,B,C, resp.).
Conjecture:
The radical axis of (Oa), (Na) passes through a fixed point.
Generalization:
Let ABC, A'B'C' be two homothetic triangles. Let L1,L2,L3 be three parallel lines through A,B,C, resp. The reflections of L1,L2,L3 in the sidelines B'C',C'A',A'B', resp. of A'B'C' bound a triangle A1B1C1
Let (Oa), (Na) be the circumcenter, NPC center of A1B1C1. The radical axis of (Oa),(Na) passes through a fixed point.
Antreas P. Hatzipolakis, 22 April 2014
The point Y is (f(a,b,c):f(b,c,a):f(c,a,b)) where f(a,b,c) is
a^10(b^2+c^2)
-a^8(3b^4+4b^2c^2+3c^4)
+a^6(2b^6+5b^4c^2+5b^2c^4+2c^6)
+2a^4(b^8-3b^6c^2+b^4c^4-3b^2c^6+c^8)
-a^2(b^2-c^2)^2(3b^6-4b^4c^2-4b^2c^4+3c^6)
+(b^2-c^2)^6+2a^4(b^8-3b^6c^2+b^4c^4-3b^2c^6+c^8)
Angel Montesdeoca, Hyacinthos #22171 and in HG
CONJECTURES:
Let ABC be a triangle and L1,L2,L3 three parallel lines through A,B,C, resp. and A'B'C'
the triangle bounded by the reflections of L1,L2,L3 in the sidelines BC,CA,AB of ABC, resp.
Conjecture 1.
Let P be a fixed point. As the three lines L1,L2,L3 move around A,B,C, being parallel,
the point P wrt triangle A'B'C' moves on a fixed circle.
Note: We have seen the cases of the Euler lines and the radical axes of (O) and (N).
Conjecture 2.
Let L be a fixed line. As the lines L1,L2,L3 move around A,B,C, being parallel, the line line L wrt A'B'C' passes through a fixed point (the envelope of the lines is a degenerated circle).
Problem: Which are the envelopes of fixed circles of A'B'C' (circumcircle, NPC, incircle ...) ?
Antreas P. Hatzipolakis, 25 April 2014