Let ABC be a triangle and A'B'C' the cevian triangle of P = I (incenter).
Denote:
Oab, Oac = the circumcenters of ABA', ACA', resp.
Oa = the circumcenter of AOabOac. Similarly Ob, Oc
1. The Euler lines of ABC, AOabOac, BObcOba, COcaOcb are concurrent.
2. The Orthocenter of OaObOc is lying on the Euler Line of ABC.
Note:
For A'B'C' = cevian triangle of a point P, the circumcircles of AOabOac, BObcOba, COcaOcb are concurrent at O of ABC.
By Miquel theorem in the quadrilateral (AB,BC,CA,AA'), O is lying on the circumcircle of AOabOac. Similarly O is lying on the circumcircles of BObcOba, COcaOcb
Antreas P. Hatzipolakis, 3 October 2014
*** The Euler lines of ABC, AOabOac, BObcOba, COcaOcb are concurrent in X(186) = Inverse in circumcircle of orthocenter.
*** The Orthocenter of OaObOc is
X=(a^2 (a^2 - b^2 - b c - c^2) (a^5 (b + c) - 2 a^3 (b^3 + c^3) - a^2 b c (b^2 + c^2) + a (b^5 - b^4 c - b c^4 + c^5)+ b c (b^2 - c^2)^2) : ... :...)
lying on the Euler Line of ABC, and with (6-9-13)-search number 1.269044824987441168348286504.
X = (r^2 + 2 r R - R^2 + s^2)X(3) + R^2 X(4)
Angel Montesdeoca. Hyacinthos #22604
1) X(186)
2) a^2 (a^2-b^2-b c-c^2) (a^5 b-2 a^3 b^3+a b^5+a^5 c-a^2 b^3 c-a b^4 c+b^5 c-2 a^3 c^3-a^2 b c^3-2 b^3 c^3-a b c^4+a c^5+b c^5)::
on lines {{2,3},{35,500},{55,5453},{511,5495},{3724,5492}},
Search = 3.7222371386671506172
Agree with barys, however I think the search number is suspect. Reckon it should be 3.7222371386671506172.
Peter Moses
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου