Κυριακή 2 Ιουνίου 2013

N1N2N3 - PERSPECTIVE

Let ABC be a triangle, A'B'C' the antipedal triangle of I (excentral tr.), N1,N2,N3 the NPC centers of IBC, ICA, IAB, resp. and Na,Nb,Nc the NPC centers of A'BC, B'CA, C'AB, resp.

1. The triangles A'B'C', N1N2N3 are perspective.

Perspector:

(aabc+a(a+b+c)(bb+4bc+cc-aa) , ... , ...)

Barry Wolk, Anopolis #347

ETC X(5506)

2. The triangles N1N2N3, NaNbNc are perspective (?).

Antreas P. Hatzipolakis, 2 June 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...