1. The circumcircles of ABC, AN2N3, BN3N1, CN1N2 are concurrent.
********************
It is now the center X(5606) in ETC
*******************
2. The circumcircles of ABC, ANbNc, BNcNa, CNaNb are concurent.
Note: The circumcenter of NaNbNc is the O.
Antreas P. Hatzipolakis, 2 June 2013
Addendum (26 - 11 - 2013)
1'. The circumcircles of N1BC, N2CA, N3AB are concurrent.
2'. The circumcircles of NaBC, NbCA, NcAB are concurrent.
APH, Anopolis #1119
*******************************
*** 1'. X(502)
*** 2'. ( (b+c) (a^6- a^4(b^2+c^2) - a^2(b^4-3b^2c^2+c^4) - 2a b c(b-c)^2(b+c) + (b-c)^4(b+c)^2 ) : ... : ... )
with (6-9-13)-search number 2.5719845710987353841258271936
Angel Montesdeoca, Anopolis #1120
*******************************
( (b+c) (a^6- a^4(b^2+c^2) - a^2(b^4-3b^2c^2+c^4) - 2a b c(b-c)^2(b+c) + (b-c)^4(b+c)^2 ) : ... : ... ) = R X[65]-(2r+R) X[1365], is on lines {{1,149},{10,1109},{36,759},{37,115},{65,1365},{162,1838},{267,3336},{897,1738},{1054,1247},{1737,2166},{2218,2915}}.
isogonal conjugate X(5127)
X(2245) cross-conjugate of X(226)
trilinear pole of line X(661) X(2294)
X(3) isoconjugate of X(2074)
X(21) isoconjugate of X(5172)
trilinear product of X(523) & X(1290)
barycentric product of X(1290) & X(1577)
antigonal of X(502)
Peter J.C. Moses, 2 Dec 2013
***************
It is now X(5620) = ISOGONAL CONJUGATE OF X(5127) in ETC
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου