Τρίτη 23 Απριλίου 2013

PERSPECTIVE

Let ABC be a triangle, A'B'C' the antipedal triangle of P = O and Oa, Ob, Oc the circumcenters of OB'C', OC'A', OA'B'. resp.

Denote:

Ab = ObOa /\ OcA

Ac = OcOa /\ ObA

Bc = OcOb /\ OaB

Ba = OaOb /\ OcB

Ca = OaOc /\ ObC

Cb = ObOc /\ OaC

The triangles OaObOc, Triangle A*B*C* bounded by (AbAc, BcBa, CaCb) are perspective (??).

Locus of P ??

Antreas P. Hatzipolakis, Anopolis #156

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...