Σάββατο 13 Απριλίου 2013

INCENTER AND NPCs

Let ABC be a triangle.

Denote:

N1,N2,N3 = The NPC centers of IBC, ICA, IAB, resp.

N11, N22, N33 = The NPC centers of N1BC, N2CA, N3AB, resp.

1. The lines N1N11, N2N22, N3N33 are parallel to Euler Line of ABC.

2. The Circumcenter of N1N2N3 is N, the NPC center of ABC.

Synthetic Proofs?

Antreas P. Hatzipolakis, 13 April 2013

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...