Κυριακή 22 Ιανουαρίου 2012

BROCARD PRIZE



Let ABC be a triangle and Ka, Kb, Kc the Brocard axes of
the triangles GBC, GCA, GAB, resp.

Let A'B'C' be a triangle homothetic and sharing the same
centroid G with ABC.

Conjecture:

The reflections La,Lb,Lc of Ka,Kb,Kc in the sidelines B'C', C'A',
A'B' of A'B'C' resp. are concurrent.

See: ANOPOLIS list, Message 137

The first who will send a solution (synthetic or not) to list HYACINTHOS will win the book: F.G.-M.: Exercices d' Algebre (1198 pages)



Good Luck!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...