Τρίτη 21 Ιανουαρίου 2025

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a^4*b^6*c^2 + 2*a^2*b^8*c^2 + a^8*c^4 + 4*a^4*b^4*c^4 - 2*a^2*b^6*c^4 + 2*b^8*c^4 - 2*a^6*c^6 - 2*a^4*b^2*c^6 - 2*a^2*b^4*c^6 - 4*b^6*c^6 + a^4*c^8 + 2*a^2*b^2*c^8 + 2*b^4*c^8) : :
X(66901) = 2 X[2] - 3 X[62596], 5 X[2] - 3 X[63741], X[23611] - 3 X[62596], 5 X[23611] - 6 X[63741], 5 X[62596] - 2 X[63741]

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66901) lies on these lines: {2, 51}, {9148, 39469}, {11123, 55143}, {13409, 20859}, {14966, 43650}

X(66901) = reflection of X(23611) in X(2)
X(66901) = crosspoint of X(290) and X(511)
X(66901) = crosssum of X(98) and X(237)
X(66901) = {X(23611),X(62596)}-harmonic conjugate of X(2)


X(66902) = X(2) OF THE CEVIAN TRIANGLE OF X(385)

Barycentrics    (a^2 - b*c)*(a^2 + b*c)*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^4 - a^2*b^2 + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66902) lies on these lines: {2, 51}, {22, 56393}, {114, 51335}, {230, 47734}, {325, 18873}, {351, 2799}, {385, 40820}, {419, 17941}, {877, 6353}, {1180, 34349}, {2396, 59707}, {4226, 14265}, {5306, 66354}, {5976, 36213}, {6248, 57615}, {6676, 41172}, {8623, 63736}, {39998, 62431}, {44215, 45330}, {46840, 46888}, {47200, 57257}

X(66902) = X(i)-Ceva conjugate of X(j) for these (i,j): {230, 114}, {385, 12829}, {419, 36213}
X(66902) = X(i)-isoconjugate of X(j) for these (i,j): {1581, 2065}, {1967, 40428}, {8773, 34238}, {36051, 36897}
X(66902) = X(i)-Dao conjugate of X(j) for these (i,j): {114, 36897}, {230, 1916}, {325, 8781}, {868, 66267}, {8290, 40428}, {8623, 2987}, {19576, 2065}, {36212, 40708}, {39072, 34238}
X(66902) = crosspoint of X(i) and X(j) for these (i,j): {230, 12829}, {385, 5976}
X(66902) = crosssum of X(694) and X(34238)
X(66902) = crossdifference of every pair of points on line {3288, 15391}
X(66902) = barycentric product X(i)*X(j) for these {i,j}: {114, 385}, {230, 5976}, {325, 12829}, {419, 62590}, {1966, 17462}, {3564, 39931}, {3978, 51335}, {14265, 46888}, {17941, 55267}, {17984, 47406}, {36213, 51481}
X(66902) = barycentric quotient X(i)/X(j) for these {i,j}: {114, 1916}, {230, 36897}, {385, 40428}, {1691, 2065}, {1692, 34238}, {4226, 39291}, {5976, 8781}, {12829, 98}, {17462, 1581}, {17941, 55266}, {36213, 2987}, {39931, 35142}, {46888, 52091}, {47406, 36214}, {51324, 3563}, {51335, 694}, {51430, 65781}, {52144, 15391}, {55267, 66267}, {60504, 18858}, {62590, 40708}


X(66903) = X(2) OF THE CEVIAN TRIANGLE OF X(401)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(2*a^6 - a^4*b^2 - b^6 - a^4*c^2 + b^4*c^2 + b^2*c^4 - c^6)*(a^8 - 2*a^6*b^2 + a^4*b^4 - 2*a^6*c^2 + a^4*b^2*c^2 + b^6*c^2 + a^4*c^4 - 2*b^4*c^4 + b^2*c^6) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66903) lies on these lines: {2, 51}, {132, 15595}, {401, 32545}, {441, 51960}, {877, 37669}, {1636, 2799}, {8779, 30737}, {10311, 63464}, {13346, 50437}, {23292, 41172}, {40684, 62431}, {52128, 62595}

X(66903) = X(441)-Ceva conjugate of X(15595)
X(66903) = X(i)-Dao conjugate of X(j) for these (i,j): {297, 6330}, {441, 1972}, {39073, 1987}, {39081, 9476}
X(66903) v= crosspoint of X(401) and X(62595)
X(66903) = barycentric product X(i)*X(j) for these {i,j}: {401, 15595}, {441, 62595}, {1955, 17875}, {9475, 44137}, {30737, 52128} .
X(66903) = barycentric quotient X(i)/X(j) for these {i,j}: {401, 9476}, {9475, 1987}, {15595, 1972}, {52128, 1297}, {55275, 62519}, {62595, 6330}, {66076, 53205}


X(66904) = X(2) OF THE CEVIAN TRIANGLE OF X(1916)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^6*b^2 - a^4*b^4 + 2*a^2*b^6 + a^6*c^2 - 2*a^4*b^2*c^2 - a^2*b^4*c^2 + b^6*c^2 - a^4*c^4 - a^2*b^2*c^4 - 2*b^4*c^4 + 2*a^2*c^6 + b^2*c^6) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66904) lies on these lines: {2, 51}, {114, 36790}, {325, 40810}, {868, 23098}, {877, 8889}, {1368, 41172}, {2799, 8029}, {5999, 40820}, {8024, 62431}, {9300, 66354}, {21531, 47648}, {36213, 38383}, {44132, 51843}, {51820, 58849}

X(66904) = X(2023)-Ceva conjugate of X(46840)
X(66904) = X(i)-Dao conjugate of X(j) for these (i,j): {2023, 385}, {46840, 98} .
X(66904) = crosspoint of X(325) and X(1916)
X(66904) = crosssum of X(1691) and X(1976)
X(66904) = crossdifference of every pair of points on line {3288, 51327}
X(66904) = barycentric product X(i)*X(j) for these {i,j}: {325, 2023}, {1916, 46840}
X(66904) = barycentric quotient X(i)/X(j) for these {i,j}: {2023, 98}, {46840, 385}


X(66905) = X(2) OF THE CEVIAN TRIANGLE OF X(1972)

Barycentrics    (a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^12*b^2 - 2*a^10*b^4 + 2*a^8*b^6 - 4*a^6*b^8 + 5*a^4*b^10 - 2*a^2*b^12 + a^12*c^2 - a^8*b^4*c^2 + 2*a^6*b^6*c^2 - 7*a^4*b^8*c^2 + 6*a^2*b^10*c^2 - b^12*c^2 - 2*a^10*c^4 - a^8*b^2*c^4 + 4*a^6*b^4*c^4 + 2*a^4*b^6*c^4 - 6*a^2*b^8*c^4 + 3*b^10*c^4 + 2*a^8*c^6 + 2*a^6*b^2*c^6 + 2*a^4*b^4*c^6 + 4*a^2*b^6*c^6 - 2*b^8*c^6 - 4*a^6*c^8 - 7*a^4*b^2*c^8 - 6*a^2*b^4*c^8 - 2*b^6*c^8 + 5*a^4*c^10 + 6*a^2*b^2*c^10 + 3*b^4*c^10 - 2*a^2*c^12 - b^2*c^12) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66905) lies on these lines: {2, 51}, {297, 40804}, {324, 62431}, {2799, 14391}, {2967, 15595}, {13567, 41172}, {46730, 50437}

X(66905) = crosspoint of X(297) and X(1972)
X(66905) = crosssum of X(248) and X(1971)


X(66906) = X(2) OF THE CEVIAN TRIANGLE OF X(25332)

Barycentrics    a^2*(a^2*b^4 - b^4*c^2 + a^2*c^4 - b^2*c^4)*(a^6*b^4 - a^4*b^6 + a^6*b^2*c^2 - a^4*b^4*c^2 - a^2*b^6*c^2 + a^6*c^4 - a^4*b^2*c^4 + a^2*b^4*c^4 + b^6*c^4 - a^4*c^6 - a^2*b^2*c^6 + b^4*c^6) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66906) lies on these lines: {2, 51}, {184, 32485}, {3229, 47648}

X(66906) = X(39080)-Ceva conjugate of X(3229)
X(66906) = X(41520)-isoconjugate of X(43761)
X(66906) = X(39080)-Dao conjugate of X(41520)
X(66906) = crosspoint of X(25332) and X(39092)
X(66906) = crossdifference of every pair of points on line {3288, 41520}
X(66906) = barycentric product X(i)*X(j) for these {i,j}: {698, 3511}, {3229, 25332}, {39080, 39092}
X(66906) = barycentric quotient X(i)/X(j) for these {i,j}: {3229, 41520}, {3511, 3225}, {25332, 66842}, {32748, 61098}


X(66907) = X(2) OF THE CEVIAN TRIANGLE OF X(39355)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 + 3*a^8*b^2*c^2 - 3*a^6*b^4*c^2 + a^4*b^6*c^2 - a^2*b^8*c^2 + a^8*c^4 - 3*a^6*b^2*c^4 + a^4*b^4*c^4 + a^2*b^6*c^4 - b^8*c^4 - 2*a^6*c^6 + a^4*b^2*c^6 + a^2*b^4*c^6 + 2*b^6*c^6 + a^4*c^8 - a^2*b^2*c^8 - b^4*c^8) : :
X(66907) = 5 X[2] - 3 X[62596], X[2] + 3 X[63741], 5 X[23611] + 3 X[62596], X[23611] - 3 X[63741], X[62596] + 5 X[63741], X[114] + 2 X[43935]

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66907) lies on these lines: {2, 51}, {114, 43935}, {232, 40810}, {877, 3168}, {9306, 14966}, {9419, 36213}, {10278, 55143}, {11176, 39469}, {23098, 36212}

X(66907) = midpoint of X(2) and X(23611)
X(66907) = X(i)-Ceva conjugate of X(j) for these (i,j): {11672, 511}, {39058, 39355}
X(66907) = X(39355)-cross conjugate of X(511)
X(66907) = X(i)-isoconjugate of X(j) for these (i,j): {1821, 61099}, {1910, 46271}
X(66907) = X(i)-Dao conjugate of X(j) for these (i,j): {290, 57541}, {11672, 46271}, {40601, 61099}
X(66907) = crosspoint of X(39058) and X(39355)
X(66907) = crossdifference of every pair of points on line {3288, 61099}
X(66907) = barycentric product X(i)*X(j) for these {i,j}: {325, 46272}, {511, 39355}, {1959, 39342}, {11672, 39058}
X(66907) = barycentric quotient X(i)/X(j) for these {i,j}: {237, 61099}, {511, 46271}, {39058, 57541}, {39342, 1821}, {39355, 290}, {46272, 98}
X(66907) = {X(2),X(63741)}-harmonic conjugate of X(23611)


X(66908) = X(2) OF THE CEVIAN TRIANGLE OF X(41520)

Barycentrics    a^2*(a^8*b^8 - a^6*b^10 + a^8*b^6*c^2 + 2*a^6*b^8*c^2 - 2*a^8*b^4*c^4 - 4*a^6*b^6*c^4 + 3*a^4*b^8*c^4 - 2*a^2*b^10*c^4 + a^8*b^2*c^6 - 4*a^6*b^4*c^6 + a^2*b^8*c^6 - b^10*c^6 + a^8*c^8 + 2*a^6*b^2*c^8 + 3*a^4*b^4*c^8 + a^2*b^6*c^8 + 2*b^8*c^8 - a^6*c^10 - 2*a^2*b^4*c^10 - b^6*c^10) : :

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66908) lies on these lines: {2, 51}, {351, 38237}, {694, 52009}, {3229, 14251}, {32485, 43650}

X(66908) = crosspoint of X(694) and X(41520)
X(66908) = crosssum of X(385) and X(3511)


X(66909) = X(2) OF THE CEVIAN TRIANGLE OF X(46271)

Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - a^8*b^2*c^2 + a^6*b^4*c^2 - 3*a^4*b^6*c^2 + 3*a^2*b^8*c^2 + a^8*c^4 + a^6*b^2*c^4 + 5*a^4*b^4*c^4 - 3*a^2*b^6*c^4 + 3*b^8*c^4 - 2*a^6*c^6 - 3*a^4*b^2*c^6 - 3*a^2*b^4*c^6 - 6*b^6*c^6 + a^4*c^8 + 3*a^2*b^2*c^8 + 3*b^4*c^8) : :
X(66909) = X[2] - 3 X[62596], 7 X[2] - 3 X[63741], X[23611] - 9 X[62596], 7 X[23611] - 9 X[63741], 7 X[62596] - X[63741]

See Elias M. Hagos and Peter Moses, euclid 7731.

X(66909) lies on the cubic K700 and these lines: {2, 51}, {3981, 41172}, {10190, 55143}, {39469, 45689}

X(66909) = complement of X(23611)
X(66909) = X(34536)-complementary conjugate of X(16591)
X(66909) = crosspoint of X(290) and X(46271)
X(66909) = crosssum of X(237) and X(46272)


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...