Πέμπτη 30 Ιανουαρίου 2025

INVERSE IN THE CIRCUMCIRCLE

Let ABC be a triangle, O the circumcenter, P a point different to O and Q a point not lying on the OP line.
The radical axis of the circumcircles of ABC and OQP intersect the line OP at P'. P' is the inverse of P wrt circumcircle of ABC
APH, Comment in Romantics of Geometry problem

Παρασκευή 17 Ιανουαρίου 2025

ENNEADIC LINES

Definition
Let T1, T2, T3 be three triangles with the property: The Nine Point Circle centers N1, N2, N3 of T1, T2, T3, resp. are collinear.
I call the line N1N2N3 enneadic line of T1, T2, T3
See an example of an enneadic line in geometry of triangle Euclid 6930

Conjecture
Let A1A2A3... An be a regular n-gon, n>4.  
There are three triangles of the n-gon having an enneadic line.

Problem
How many "different" enneadic lines are in a n-gon ?
(two enneadic lines are "different" if the 2 triads of the triangles are not symmetric)

Similarly we may ask for enneadic lines of 4 triangles.

PICTURES


Pentagon


Hexagon


Heptagon 1


Heptagon 2


Heptakaidecagon


Heptagon (4 triangles. Elias Hagos)

Mail Antreas P. Hatzipolakis

Τετάρτη 8 Ιανουαρίου 2025

MORLEY RELATED TRIANGLE CENTERS

MORLEY RELATED TRIANGLE CENTERS
BY ANTREAS HATZIPOLAKIS and CHRIS VAN TIENHOVEN, PETER MOSES, CESAR LOZADA

*****************************************************************************

Antreas Hatzipolakis and Chris van Tienhoven

X(6120) =  1st HATZIPOLAKIS-VAN TIENHOVEN POINT
X(6121) =  2nd HATZIPOLAKIS-VAN TIENHOVEN POINT
X(6122) =  3rd HATZIPOLAKIS-VAN TIENHOVEN POINT
X(6123) =  4th HATZIPOLAKIS-VAN TIENHOVEN POINT
X(6124) =  5th HATZIPOLAKIS-VAN TIENHOVEN POINT
X(6125) =  6th HATZIPOLAKIS-VAN TIENHOVEN POINT
X(66087) = HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE CENTER
X(66089) = PERSPECTOR OF THESE TRIANGLES: 1st MORLEY AND HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE

Antreas Hatzipolakis and Peter Moses

X(65155) =  X(2)X(15857)∩X(357)X(8065)
X(65156) =  HATZIPOLAKIS-MOSES EQUILATERAL TRIANGLE CENTER
X(65157) =  X(2)X(3276)∩X(5)X(3280)
X(65158) =  X(357)X(5456)∩X(358)X(1136)
X(65377) = CENTER OF HATZIPOLAKIS-MOSES-MORLEY HYPERBOLA
X(65378) = PERSPECTOR OF HATZIPOLAKIS-MOSES-MORLEY HYPERBOLA
X(65379) = X(357)X(1136)∩X(10632)X(16871)
X(65380) = ANTICOMPLEMENT OF X(65377)
X(65381) = 98TH HATZIPOLAKIS-MOSES-EULER POINT
X(65382) = TRILINEAR POLE OF LINE {6, 65378}
X(66329) = 1st HATZIPOLAKIS-MOSES TRISECTOR TRIANGLES PERSPECTOR
X(66330) = 2nd HATZIPOLAKIS-MOSES TRISECTOR TRIANGLES PERSPECTOR
X(66331) = 3rd HATZIPOLAKIS-MOSES TRISECTOR TRIANGLES PERSPECTOR
X(66332) = CENTER OF THE 1st MORLEY CONIC
X(66333) = PERSPECTOR OF THE 1st MORLEY CONIC
X(66365) = X(356)-CEVA CONJUGATE OF X(357)
X(66366) = X(3276)-CEVA CONJUGATE OF X(1136)
X(66367) = X(3277)-CEVA CONJUGATE OF X(1134)
X(66619) = X(3275)X(3602)∩X(3276)X(3606)

Antreas Hatzipolakis and César Lozada

X(66478) = CENTER OF THE 1st EULER-ROUSSEL EQUILATERAL TRIANGLE
X(66479) = CENTER OF THE 2nd EULER-ROUSSEL EQUILATERAL TRIANGLE
X(66480) = HOMOTHETIC CENTER OF THESE TRIANGLES: 1st EULER-ROUSSEL AND 1st MORLEY
X(66481) = HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd EULER-ROUSSEL AND 1st MORLEY

César Lozada

X(66180) = CENTER OF THE 2nd HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE
X(66181) = CENTER OF THE 3rd HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE
X(66182) = HOMOTHETIC CENTER OF THESE TRIANGLES: 2nd MORLEY AND 2nd HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE
X(66183) = HOMOTHETIC CENTER OF THESE TRIANGLES: 3rd MORLEY AND 3rd HATZIPOLAKIS-VAN TIENHOVEN EQUILATERAL TRIANGLE

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...